
QL Assembly Language Mailing List

Issue 8

Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Download from:
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_
8

Licence:
Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 16/1/2021 at 15:58:46.

Copyright ©2019 Norman Dunbar

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_8
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_8
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 7

1.1 Feedback 7

1.2 Subscribing to The Mailing List 7

1.3 Contacting The Mailing List 8

2 Happy New Year . 9

3 Feedback on Issue 5 . 11

4 Feedback on Issue 7 . 13

4.1 Feedback from Wolfgang Lenerz 13

4.2 Feedback from Marcel Kilgus 13

4.3 More Feedback from Wolfgang Lenerz 15

4.4 Even More Feedback from Wolfgang Lenerz 17

4.5 A Better Ql2utf8 20

4.6 A Better Utf82ql 26

5 Reversing Bits . 35

5.1 Reversing 2 Bits 35

5.2 Reversing 4 Bits 36

5.3 Reversing 8 Bit values 37

5.4 Reversing 16 Bit Values 37

5.5 Reversing 32 Bit Values 38

6 Powers of Two . 41

6.1 The Algorithm 41

6.1.1 How it Works . 41

6.2 Easy Version for 68020 42

6.3 Hard Version for 68008 43

7 Random Stuff . 47

7.1 Random Seed 47

7.2 Randomisation 48

7.3 Random Generation 49

8 Image Credits . 53

Listings

4.1 Wolfgang’s improved ql2utf8 Utility . 20

4.2 Wolfgang’s improved utf82ql Utility . 26

5.1 Reverse32_asm - Header Comments. 38

5.2 Reverse32_asm - SuperBASIC Entry Point. 38

5.3 Reverse32_asm - Reverse32Bits Routine. 39

6.1 MC60020 - Power2_asm . 42

6.2 MC68008 - Power2_asm . 44

7.1 The random seed . 47

7.2 Randomise function . 48

7.3 Rnd 1 to 6 function - Part 1 . 49

7.4 Rnd 1 to 6 function - Part 2 . 50

7.5 Rnd 1 to 6 function - Part 3 . 50

7.6 Rnd 1 to 6 function - Part 1 . 51

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

8 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. Happy New Year

Well then, 2020 was an absolute bummer1 of a year. Hopefully we are all safe and well and have all
survived, mentally and physically, through myriads of lockdowns and are following the rules to try
and prevent another in a seemingly endless procession of lockdowns.

I’d like to wish you all a somewhat belated Happy New Year for 2021, let’s hope it improves things
a lot over 2020, although at the time of writing (January 13th) things aren’t looking great. At least
we have a vaccine or three.

It’s been a while, I admit to my shame, since the last issue "hit the streets" back in September 2019,
but I’ve been busy as some of you are aware. I had my first book published by Apress!

The book is called Arduino Software Internals, and it covers how the Arduino Language works and
how it connects with the actual hardware of the Atmega328P/Atmega328AU microcontroller at the
heart of the Arduino Board. It has taken me over two years to write but it’s done now and out there
in all good bookshops, on Amazon.co.uk (other Amazons are available, just change the “.co.uk” to
your chosen domain, and on Apress.com too. (It’s cheaper on Apress and you get free worldwide
postage.)

Amazon had paper and Kindle versions, Apress has paper, PDF and EPUB versions.

The good news is, I’m writing another!

I hope you think that this issue of the ePeriodical was worth the wait.

1Yes, I am being polite for once!

https://www.amazon.co.uk/Arduino-Software-Internals-Complete-Language/dp/1484257898/ref=sr_1_1
https://www.apress.com/gb/book/9781484257890

3. Feedback on Issue 5

While looking at something else, I noticed that in Issue 5, Page 28, Section 4.2.1 the following text:

For example, in many opcodes, the size of the operand - .B, .W or .L - is specified in bits 5 and
6 of the opcode instruction word in memory.This is therefore a 2 bit wide bit field, starting at bit
31−5 = 26 and would be represented as follows:

{26:2}

I thought something was wrong, but didn’t know which bit(!) was incorrect, so I worked through it
and of course, the two bits in the bit field are wrong! The text should read as follows:

For example, in many opcodes, the size of the operand - .B, .W or .L - is specified in bits 6 and
5 of the opcode instruction word in memory.This is therefore a 2 bit wide bit field, starting at bit
31−6 = 25 and would be represented as follows:

{25:2}

I had of course specified a bit field for bits 5 and 4 and not for bits 6 and 5. I did mention that there
was a certain amount of confusion in bit field specifications!

You can download a corrected version of Issue 5 from GitHub1.

1https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_5

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_5

4. Feedback on Issue 7

Well now, here’s a thing. Very quickly after Issue 7 "hit the streets" I got feedback from two
different people. Thanks very much to Wolfgang and to Marcel for their input, and their permission
to publish.

4.1 Feedback from Wolfgang Lenerz

[WL] Just a little comment: there is a typo on page 16, in the third code extract at line 1: Tobias
makes a MOVEM to ...a2-a7 : it should be to ...a2-a6.

[ND] Thanks. I don’t have a Q68 (yet?) and I really didn’t have much to do with Tobias’s article
to get it into the eComic, so I didn’t notice that slight error. I fixed it in the PDF download on 1st
October 2019 at around 19:00 BST (UTC + 01:00) - so anyone who downloaded prior to that time
might wish to download again to get the correction.

[WL] Also a more general comment, which I offer as constructive criticism: in the utf82ql routine,
when handling values over 127 (i.e. at least 2 bytes), why check for the special cases first (arrows,
pound etc) before getting the values from the table? Wouldn’t it be better to leave their place in the
table at 0 as well, and every time you hit a 0 in the table you check for the exception?

[ND] Good point, thanks. That would have made more sense as the processing is more likely to be
processing valid characters than the exceptions. I thought I was doing well getting the exceptions
in what I thought was the most likely order!

[WL] Oh, and this probably doesn’t get said often enough : really enjoy reading your prose!

[ND] Thanks. It’s nice to get feedback, but much nicer to get compliments.

4.2 Feedback from Marcel Kilgus

[MK] As a pedantic ass I have to object to sentences like these:

14 Chapter 4. Feedback on Issue 7

The UK Pound symbol is character 96 ($60) on the QL, but in ASCII it is character 163 ($A3)"
(etc.)

[ND] I like pedants! My wife says I am one, then she corrects me at every available opportunity!

[MK] ASCII is, by definition, 7-bit, so it cannot contain a character with the number 163. The tale
of characters 128-255 is one fought in many battles. Linux tended to be "ISO 8859-1" and later
"ISO 8859-15" before they adopted UTF-8, on Windows you will mostly find the "Windows-1252"
encoding. These are very similar, but differ when it comes to the Euro sign for example (ISO
8859-1 is too old to have a Euro sign and the others have adopted it in different places).

[ND] I agree with you, ASCII is indeed 7 bit and 163 is definitely not 7 bit. However, there have
been 8 bit "ASCII" characters for many years, even when I was at college back in the, ahem, early
eighties, ASCII was (at least, considered) 8 bit - whether pedantically correct or not. Old habits
and all that, that’s my excuse! True ASCII is indeed only 7 bits.

I remember many occasions, back when config.txt was still a thing, trying to set up the correct
code page for a system. A nightmare as there was no Google back then to help out, just the manual
for whatever system I was installing or working with.

I am led to understand, however, that ISO/IEC 4873 introduced some extra control codes “char-
acters”, in the $80 to $9F hexadecimal range, as part of extending the 7-bit ASCII encoding to
become an 8-bit system.1 However, I sit corrected on the 7/8 bit point. Thanks.

[MK] But, and that is the important thing, Unicode was made to unify them all. And UTF-8 is
a pretty darn cool invention, unfortunately it came too late for Windows, which was a very early
adopter of Unicode at a time when everybody thought "65536 characters ought to be enough for
everyone!". So Windows started to used 16-bits for every character ("UCS-2" encoding), which
makes coding somewhat weird, and then they found out that 65536 characters are not enough after
all, so now Windows uses UTF-16, which is UTF-8’s big brother, with sometimes 2 bytes per
character and sometimes 4. What a mess. But when it comes to data storage UTF-8 is the way to
go these days, always!

[ND] It sure is a mess, and yes, UTF-8 is the way to go. As I mentioned XML files depend on it, the
web is pretty much full of it in all those HTML files etc. And, once you get your head around the
difference between a “code point” and the character’s actual bytes, it’s pretty easy to understand.

I’m not so sure that Windows is missing out or behind the times though. At work, my files are all
pretty much UTF-8 (I write my documents in ASCIIDOCTOR2 format and convert them to PDF files
using asciidoctor-pdf - if I need Office flavoured docs, I use pandoc to convert to something in
DOCX format - but I almost never use those. Asciidoctor files are plain text, and very easy to
version control! Notepad++ or VSCodium are my text editors of choice and both save in UTF-8
with no problems. Even Notepad itself can read the files - and I suspect Windows 10 will be better,
I’m on Windows 7. (Currently)

Mind you, those damned so-called "smart" quotes that Office documents insist on using mess things
up truly. It’s the first thing I turn off with my Office stuff, and every slight update or patch seems to
turn them back on! So annoying.

[MK] For QPC I already implemented these translations 20 years ago when copying text to/from
the clipboard. But well done for bringing UTF-8 to the QL

1The Unicode Consortium (October 27, 2006). "Chapter 13: Special Areas and Format Characters" (PDF). In Allen,
Julie D. (ed.). The Unicode standard, Version 5.0. Upper Saddle River, New Jersey, US: Addison-Wesley Professional. p.
314. ISBN 978-0-321-48091-0. Retrieved March 13, 2015.

2Now that’s ironic!

config.txt

4.3 More Feedback from Wolfgang Lenerz 15

[ND] Well, thanks for the reminder of how old I’m getting! The reason I did the utilities was simple,
I had one of those itches to scratch. When I did a bit of work with Jan on his updated QL Monitor,
I used a Linux system to do the typing - it’s what I’m used to - and those arrow characters caused
me no end of grief, as did the copyright and the pound signs. I messed about back then using actual,
ahem, ASCII codes (sorry!) but now, I don’t have to.

Oh, and thank you for QPC2, it’s my favourite QL program of all time, and it simply "just" works
on Linux under Wine. I did have some problems recently with it not working, but I traced that to a
mix and match installation with bits of Wine 3 and bits of Wine 4 living in sin together.

QPC2 is what has kept me in the QL scene for as long as I can remember - I always got somewhat
tired of the QL, the cables, the hard drive, the noise, the length of table I needed with limited space
in my flat (apartment) and so on. With QPC2 it’s all on my laptop. Nice and compact.

And, finally, I am a pedant’s baddest nightmare!

4.3 More Feedback from Wolfgang Lenerz

[WL] I had a longer look at ql2utf8. I hope you don’t mind a few more comments.

[ND] No, I like getting comments - most people do assembly better than I do!

[WL] When I tried to compile the source file, I couldn’t, as the different traps weren’t defined.

i o _ f b y t e equ 1
i o _ s b y t e equ 5
m t _ f r j o b equ 5

[ND] Were you using QMAC by any chance? I know that’s a recurring problem for QMAC as GWASS
and GWASL come with the various traps and vectors "automatically" included. If I include them in
the source, then they won’t assemble for me, I get an error about duplicate definitions.

[WL] Moreover, I got a few errors that some bra.s were out of reach.

[ND] Hmmm, I just recompiled with GWASS and got no errors at all. However, I did get one
error with GWASL. Looking at the listing file, it’s complaining that the label oneByte is an “illegal
instruction” - weird. I remember GWASL doing that on a few occasions in the past. I used to edit the
sources, rub out the label, and type it in again, that usually worked. I could never trace it to hidden
characters etc as a hex dump of the source showed nothing out of the ordinary.

I don’t however, get any errors about short branches being out of reach.

[WL] It seems to me that the two lines of code at label TestBit7 are superfluous: you are doing
the exact same test just beneath it, at label Testpound.

[ND] That’s a typing error. Originally I only had the BVS.S instruction rather than the BTST #7 so
in theory, if D1 was loaded with a byte >= $80 the V flag would be set. Unfortunately it didn’t work.
I traced the code under QMON2 and by the time we get to that point, the V flag is clear, always. I
obviously forgot to remove the BVS when I edited the code to add in the BTST #7 instruction. My
mistake.

[WL] You could replace the two instructions at Label OneByte with the single instruction PEA
readLoop.

[ND] I see what you mean, if I do that replacement, then instead of branching to writeByte and

16 Chapter 4. Feedback on Issue 7

returning and then branching off to readLoop, just drop in to writeByte and return automagically
to the top of the loop. Nice!

[WL] Then you could also just delete the last two instructions of label gotCopyright (no need to
bsr.s writebyte, you just fall through) and you could also replace, in the different gotxxxx routines
(e.g. gotEuro, gotGrave etc) the two instructions:

b s r . s w r i t e B y t e
b r a readLoop

with a simple:

b r a . s oneByte

and it might be able to use a bra.s rather than a bra somewhere in the changed code.

[ND] Yes, that all makes perfect sense given the above changes to oneByte.

[WL] At label notArrows, you might want to replace these 4 lines

addq . b #1 , d2
move . b 0 (a2 , d2 .w) , d1 ; Second b y t e
b s r w r i t e B y t e ; Send i t o u t
b r a readLoop ; Go around .

with these two

1 move . b 1 (a2 , d2 .w) , d1 ; Second b y t e
2 b r a oneByte

[ND] Yes, that makes perfect sense too. Thanks.

[WL] I would set the output & input channel IDs into two registers (eg A4, A5) and move them
into A0 when needed in the byte read/write subroutines, instead of accessing the stack (and thus
memory) every time with a LEA.

[ND] I used A4 and A5 for that very purpose in the following chapter, in the Utf82ql code, and
forgot to go back and fix this code to do the same.

[WL] Finally, I would also include test at label notArrows to make sure that the byte in D1 doesn’t
exceed the max value of your table. I know that values above that are not printable characters, but
it is possible to include them in a text file. You might want to tell the user that some characters
couldn’t be translated...

[ND] Yes indeed, that was an oversight. Thanks for pointing it out.

[WL] Hope you don’t mind the above.

[ND] Not at all, many thanks indeed.

So, given all those amendments, here for your delectation is the latest version of the Ql2utf8 code,
incorporating all of Wolgang’s changes and corrections.

4.4 Even More Feedback from Wolfgang Lenerz 17

4.4 Even More Feedback from Wolfgang Lenerz

[WL] I also had a look through the utf2ql code. Some of the comments made for the other routine
(ql2utf8 ND) may also apply here, no need to go through them again. Here I have some more
comments on this routine.

[ND] Ok, I’m sitting comfortably

[WL] The first one is not really about the code itself, but the way you structured it. Of course,
this is much of a personal preference, so please take this with a pinch (or even a spoonful) of salt.
Leaving out the exception and read/write routines, your code is structured thus:

readLoop
g e t b y t e
l e a v e i f EOF

M u l t i b y t e s
i s i t two b y t e s ?
yes −> jump t o hand le_ two

NotTwo
i s i t t h r e e b y t e s ?
yes −> jump t o h a n d l e _ t h r e e

E r r o r
n o t t h r e e b y t e s , r e t u r n e r r o r

hand le_ two
t r e a t two b y t e s
b r a r e a d l o o p

h a n d l e _ t h r e e
t r e a t t h r e e b y t e s
b r a readLoop

[WL] For me, you have 6 different blocks of code. I would prefer the following structure with 4
blocks (making the code less "spaghetti"):

readLoop
g e t b y t e
l e a v e i f EOF

hand le_ two
i s i t two b y t e s ?
no−> jump t o h a n d l e t h r e e
t r e a t two b y t e s
b r a r e a d l o o p

h a n d l e _ t h r e e
i s i t 3 b y t e s ?
no −> jump t o e r r o r
t r e a t t h r e e b y t e s
b r a readLoop

E r r o r

18 Chapter 4. Feedback on Issue 7

n o t t h r e e b y t e s , r e t u r n e r r o r

[ND] Yes, I admit that sometimes my structure leaves a lot to be desired and you are correct in
what you say above - I must try harder!

[WL] Leaving out the branches to the loop, basically your way of doing it is:

i s i t some th ing ?
yes , go o f f , h a n d l e i t _ 1

i s i t some th ing e l s e ?
yes , go o f f and h a n d l e i t _ 2

e r r o r
h a n d l e _ i t 1
h a n d l e _ i t 2

[WL] Whereas mine is:

i s i t some th ing ?
no , go o f f t o n e x t check

h a n d l e i t 1
i s i t some th ing e l s e ?

no , go t o e r r o r

h a n d l e i t 2

e r r o r

[WL] Again, this is a personal preference: There is no functional difference, but I, personally, find
the second one easier to read if you want to follow the flow of the code.

[ND] Agreed.

[WL] But in doing so it will allow you to write the code at the multiBytes label so:

m u l t i B y t e s
move . b d1 , d2
a n d i . b #%11100000 , d2 ; <−− BUG HERE? [ND]
cmp . b #%11000000 , d2 ; 2 b y t e s ?
bne . s t h r e e b y t e s ; . . . no−>

twoBytes
(t r e a t 2 b y t e s i n c l u d i n g e x c e p t i o n s)

t e s t T h r e e (no need t o copy d1 i n t o d2 a g a i n)
cmp . b #%11100000 , d2 ; 3 b y t e s ?
bne inva l idUTF8 ; . . . no −>
. . .

[ND] Hmm, I think you have a bug there. For three byte characters the top nibble should be 1110,
so your mask is missing a ’1’ bit. I suspect you intended to type the following for multiBytes:

4.4 Even More Feedback from Wolfgang Lenerz 19

m u l t i B y t e s
move . b d1 , d2
a n d i . b #%11110000 , d2

Otherwise you are forcing bit 4 of D2 to always be a zero. However, that minor niggle aside, I like
your version better than mine as I/we only need a single ANDI instruction which keeps the top
nibble, which can then be compared to check for two byte (110x) or three byte (1110) characters.
Far more efficient indeed.

[WL] The scanTable routine is probably the most time consuming part of the code, so I’d have
written it as follows:

s c a n T a b l e
move . l a2 , a3 ; p o i n t t o t a b l e
move .w #59 , d0 ; t h e r e a r e 60 words t o compare

scanLoop
cmp .w (a3) + , d2 ; i s i t a match ?
beq . s scanDone ; . . . yes −>
dbf d0 , scanLoop ; t r y a l l p e r m i t t e d v a l u e s
r t s ; no match found , r e t u r n NZ from cmp

scanDone
move . l a3 , d0 ; where we found i t (+ 2)
sub . l a2 , d0 ; i n d e x i n t o t a b l e
subq .w #2 , d0 ; b u t we o v e r s h o t by 2 b y t e s

l s r .w #1 , d0 ; o f f s e t i n t o i n d e x
add .w #$80 , d0 ; c o n v e r t t o c h a r a c t e r code
cmp .w d0 , d0 ; s e e below
r t s ; t h e c o n d i t i o n code Z i s s e t by t h e cmp

[ND] Curses, I’ve been found out! My way was easier for me as I didn’t have to count up however
many two byte characters there were! However, as they say about Unix/Linux, there’s more than
one way to skin a cat, but again, I prefer your method.

[WL] There are a few more instructions when you find the correct value, but the search loop itself
is smaller and will be faster (unless the value searched for is the very first in the table, and even
then it’ll be a close match). The CMP D0,D0 is there so that the routine returns with the Z flag set,
without affecting any other register by zeroing it.

[ND] I wasn’t fond of the non-standard way of detecting an error in my version, I have to admit.
This is far far better.

[WL] So, coming back from calling the routine at label doScan, a simple BNE.S ERROR will do:
doScan

b s r . s s c a n T a b l e
bne . s inva l idUTF8
(. . . s u c c e s s i n d0 . . .)

[ND] Agreed, this is better and resembles more a standard error return, zero is good, non-zero is
not good.

20 Chapter 4. Feedback on Issue 7

[WL] At label twoBytes, you should be able to write:

twoBytes
l s l .w #8 , d1 ; move b y t e up
b s r r e a d B y t e ; g e t n e x t b y t e i n t o LSB of D1

[WL] You should now have the correct word in D1. Remember, though, as of then to test on D1,
not D2, for valid utf, even in the scanTable loop.

Note, this presumes that the trap handler does its work correctly and only modifies the LSB3 of D1
to put the returned value in there. (Unlike, e.g. some early versions of SMSQmulator which just
reset the entire register to 0 and then sets the byte. Ouch!)

[ND] I think that I shall leave the code using D2, just in case it causes problems elsewhere then.
Better safe than sorry.

[WL] Most of these comments go a little beyond just checking the code itself, I hope you don’t
mind.

[ND] No, I don’t mind and in fact I welcome comments on anything printed in this ePeriodical. If
you have a problem with my writing style, code etc, I’m happy to hear from you. From anyone that
is!

4.5 A Better Ql2utf8

Following on from Wolfgang’s comments and suggested improvements, I now present the improved
versions of the UTF8 routines from the last issue.

In case you are wondering about the use of UTF8 on the QL, I was pleased to send Dilwyn Jones a
copy of these two improved routines a wee while back as he is working with Tim Swenson on a
new Internet Relay Chat (IRC) application for the QL.

It’s called QLirc and needs to use UTF8. You can read all about it on The QL Forum4.

1 ;−−
2 ; QL2UTF8 :
3 ;
4 ; Th i s f i l t e r c o n v e r t s QL t e x t f i l e s t o UTF8 f o r use on Linux , Mac or
5 ; Windows where most modern e d i t o r s e t c , d e f a u l t t o UTF8 .
6 ;
7 ;
8 ; EX q l 2 u t f 8 _ b i n , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
9 ;

10 ;−−
11 ; 2 6 / 0 9 / 2 0 1 9 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t
12 ; 0 7 / 1 0 / 2 0 1 9 WLenerz Many improvements .
13 ;−−
14 ; (c) Norman Dunbar , Wolfgang Lenerz 2019 . P e r m i s s i o n g r a n t e d f o r
15 ; u n l i m i t e d use o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d .
16 ; J u s t e n j o y !
17 ;−−
18

3LSB = Lowest Significant Byte.
4https://qlforum.co.uk/viewtopic.php?f=3&t=3517

https://qlforum.co.uk/viewtopic.php?f=3&t=3517

4.5 A Better Ql2utf8 21

19 ; How many c h a n n e l s do I want ?
20 numchans equ 2 ; How many c h a n n e l s r e q u i r e d ?
21
22
23 ; S t a c k s t u f f .
24 s o u r c e I d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
25 d e s t I d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
26
27 ; Othe r V a r i a b l e s
28 pound equ 96 ; UK Pound s i g n .
29 c o p y r i g h t equ 127 ; (c) s i g n .
30 g r a v e equ 159 ; B a c k t i c k / Grave a c c e n t .
31 eu ro equ 181 ; Euro symbol
32 e r r _ b p equ −15 ; Bad p a r a m e t e r
33 e r r _ e o f equ −10 ; End of f i l e
34 e r r _ o r equ −4 ; Out o f r a n g e
35 me equ −1 ; Th i s job ’ s i d
36 t i m e o u t equ −1 ; I n f i n t y , and beyond !
37
38 ;−−
39 ; Uncomment t h e f o l l o w i n g i f you a r e u s i n g QMAC as your a s s e m b l e r .
40 ;−−
41 ; i o _ f b y t e equ 1 ; F e t c h one b y t e
42 ; i o _ s b y t e equ 5 ; Send one b y t e
43 ; m t _ f r j o b equ 5 ; Force remove a j o b
44 ;−−
45
46 ; ==
47 ; Here b e g i n s t h e code .
48 ;−−
49 ; S t a c k on e n t r y :
50 ;
51 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
52 ; $02 (a7) = Source f i l e c h a n n e l i d .
53 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
54 ; ==
55 s t a r t
56 b r a . s c h e c k S t a c k
57
58 dc . l $00
59 dc .w $4afb
60 name
61 dc .w name_end−name−2
62 dc . b ’QL2UTF8 ’
63 name_end equ *
64
65 v e r s i o n dc .w vers_end−v e r s i o n −2
66 dc . b ’ V e r s i o n 1 . 0 1 ’
67 v e r s _ e n d equ *
68
69
70 b a d _ p a r a m e t e r
71 moveq # e r r_bp , d0 ; Guess !
72 b r a e r r o r E x i t ; Die h o r r i b l y
73
74

22 Chapter 4. Feedback on Issue 7

75 ;−−
76 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s − any
77 ; t h i n g o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER e r r o r on
78 ; e x i t from EW (b u t n o t from EX) .
79 ;−−
80 c h e c k S t a c k
81 cmpi .w #numchans , (a7) ; Two c h a n n e l s i s a must
82 bne . s b a d _ p a r a m e t e r ; Oops
83
84 ;−−
85 ; I n i t i a l i s e a c o u p l e o f r e g i s t e r s t h a t w i l l keep t h e i r v a l u e s a l l
86 ; t h r o u g h t h e r e s t o f t h e code .
87 ;−−
88 q l 2 u t f 8
89 l e a u t f 8 , a2 ; P r e s e r v e d t h r o u g h o u t
90 moveq # t i m e o u t , d3 ; Timeout , a l s o P r e s e r v e d
91 move . l s o u r c e I D (a7) , a4 ; I n p u t c h a n n e l i d
92 move . l d e s t I d (a7) , a5 ; Outpu t c h a n n e l i d
93
94 ;−−
95 ; The main loop s t a r t s h e r e . Read a s i n g l e byte , check f o r EOF e t c .
96 ;−−
97 readLoop
98 moveq # i o _ f b y t e , d0 ; F e t c h one b y t e
99 move . l a4 , a0 ; Channel t o readLoop

100 t r a p #3 ; Do i n p u t
101 t s t . l d0 ; OK?
102 beq . s t e s t B i t 7 ; Yes
103 cmpi . l # e r r _ e o f , d0 ; A l l done ?
104 beq a l l D o n e ; Yes .
105 b r a e r r o r E x i t ; Oops !
106
107 t e s t B i t 7
108 b t s t #7 , d1 ; B i t 7 s e t ?
109 bne . s twoBytes ; M u l t i Byte c h a r a c t e r i f so
110
111 ;−−
112 ; The UK Pound and c o p y r i g h t s i g n s a r e e x c e p t i o n s t o t h e " b y t e s
113 ; l e s s t h a n $80 a r e t h e same i n UTF8 as t h e y a r e i n ASCII " r u l e a s
114 ; S i r C l i v e didn ’ t f o l l o w ASCII 100%. Both c h a r a c t e r s a r e m u l t i−b y t e
115 ; i n UTF8 .
116 ;−−
117 t e s t P o u n d
118 cmpi . b #pound , d1 ; Got a UK Pound s i g n ?
119 bne . s t e s t C o p y r i g h t ; No .
120
121 gotPound
122 move . b #$c2 , d1 ; Pound i s $C2A3 i n UTF8 .
123 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
124 move . b #$a3 , d1
125 b r a . s oneByte ; Wr i t e o u t & c a r r y on .
126
127 ;−−
128 ; Here we r e p e a t t h e same check as above , i n c a s e we have t h e
129 ; c o p y r i g h t s i g n .
130 ;−−

4.5 A Better Ql2utf8 23

131 t e s t C o p y r i g h t
132 cmpi . b # c o p y r i g h t , d1 ; Got a c o p y r i g h t s i g n ?
133 bne . s oneByte ; No .
134
135 g o t C o p y r i g h t
136 move . b #$c2 , d1 ; C o p y r i g h t i s $C2A9 i n UTF8
137 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
138 move . b #$a9 , d1 ; Then drop i n t o w r i t e & c a r r y on
139
140 ;−−
141 ; A l l o t h e r ASCII c h a r a c t e r s , below $80 , a r e s i n g l e b y t e i n UTF8 and
142 ; a r e t h e same code as i n ASCII . S t a c k t h e a d d r e s s o f readLoop and
143 ; drop i n t o w r i t e B y t e . On RTS , we w i l l h i t t h e t o p of t h e loop a g a i n .
144 ; (C o u r t e s y Wolfgang Lenerz .)
145 ;−−
146 oneByte
147 pea readLoop
148
149 ;−−
150 ; A s m a l l b u t p e r f e c t l y formed s u b r o u t i n e t o send t h e b y t e i n D1 t o
151 ; t h e o u t p u t c h a n n e l .
152 ;−−
153 w r i t e B y t e
154 moveq # i o _ s b y t e , d0 ; Send one b y t e
155 move . l a5 , a0 ; Outpu t c h a n n e l i d
156 t r a p #3
157 t s t . l d0 ; OK?
158 bne e r r o r E x i t ; Oops !
159 r t s
160
161 ;−−
162 ; ASCII codes from $80 upwards r e q u i r e m u l t i p l e b y t e s i n UTF8 . In t h e
163 ; c a s e o f t h e QL, t h e s e a r e mos t l y 2 b y t e s long . I c o u l d use IO_SSTRG
164 ; here , I know .
165 ; However , a s ever , t h e r e a r e e x c e p t i o n s . The g r a v e a c c e n t (b a c k t i c k)
166 ; i s a s i n g l e b y t e on o u t p u t , w h i l e t h e 4 ar row keys a r e t h r e e b y t e s .
167 ; The b y t e s t o be s e n t a r e r e a d from a t a b l e because , aga in , t h e QL
168 ; i s n o t u s i n g t h e f u l l s e t o f a c c e n t e d c h a r a c t e r s − so t h e r e i s
169 ; mucking a b o u t t o be done .
170 ;−−
171 twoBytes
172 cmpi . b # grave , d1 ; B a c k t i c k / Grave a c c e n t ?
173 bne . s t e s t E u r o ; No .
174
175 ;−−
176 ; We a r e d e a l i n g wi th a b a c k t i c k c h a r a c t e r (aka Grave a c c e n t) ?
177 ;−−
178 go tGrave
179 move . b #pound , d1 ; Grave i n = pound o u t !
180 b r a . s oneByte ; Wr i t e o u t & c a r r y on
181
182 ;−−
183 ; Here we r e p e a t t h e same check as above , i n c a s e we have t h e
184 ; Euro s i g n .
185 ;−−
186 t e s t E u r o

24 Chapter 4. Feedback on Issue 7

187 cmpi . b # euro , d1 ; Got a Euro s i g n ?
188 bne . s t e s t A r r o w s ; No .
189
190 go tEuro
191 move . b #$e2 , d1 ; Euro i s $E282AC i n UTF8
192 b s r . s w r i t e B y t e ; Wr i t e f i r s t b y t e
193 move . b #$82 , d1
194 b s r . s w r i t e B y t e ; Wr i t e second b y t e
195 move . b # $ac , d1
196 b r a . s oneByte ; Wr i t e o u t and c a r r y on
197
198 ;−−
199 ; The a r ro w s a r e $BC , $BD , $BE and $BF (l e f t , r i g h t , up , down) . These
200 ; a r e t h r e e b y t e s i n UTF8 , $E2 $86 $9x where ’x ’ i s 0 , 2 , 1 o r 3 .
201 ;−−
202 t e s t A r r o w s
203 move . b d1 , d2 ; Copy c h a r a c t e r code
204 s u b i . b #$bc , d2 ; Anyth ing lower = C s e t
205 bcs . s no tArrows ; And i s n o t an ar row
206 subq . b #4 , d2 ; Arrows = 0−3. C c l e a r i s bad
207 bcc . s no tArrows ; S t i l l n o t an ar row .
208
209 gotArrows
210 s u b i . b #$bc , d1 ; C o r r e c t a r row code , 0 − 3
211 l e a ar rows , a3 ; Arrow t a b l e
212 move . b d1 , d2 ; Save i n d e x i n t o t a b l e
213 e x t .w d2 ; Need word n o t b y t e
214
215 move . b #$e2 , d1 ; F i r s t b y t e
216 b s r . s w r i t e B y t e
217 move . b #$86 , d1 ; Second b y t e
218 b s r . s w r i t e B y t e
219 move . b 0 (a3 , d2 .w) , d1 ; T h i r d b y t e
220 b r a . s oneByte ; Wr i t e i t & go around a g a i n .
221
222 ;−−
223 ; We need t h i s a s a r ro w s i n t h e QL a r e Lef t , Right , Up , Down b u t i n
224 ; UTF8 t h e y a r e Le f t , Up , Right , Down . Sigh .
225 ;−−
226 a r ro ws
227 dc . b $90 , $92 , $91 , $93 ; Awkward b y t e o r d e r !
228
229 ;−−
230 ; Now we a r e c e r t a i n , e v e r y t h i n g i s two b y t e s . Read them from t h e
231 ; t a b l e and w r i t e them o u t . However , t h e r e a r e on ly 60 e n t r i e s i n t h e
232 ; t a b l e − b e s t we check !
233 ;−−
234 notArrows
235 cmpi . b #59 , d1 ; Are we i n r a n g e f o r t h e t a b l e ?
236 bcc . s inRange ; Yes
237
238 outOfRange
239 moveq # e r r _ o r , d0 ; Out o f r a n g e
240 b r a . s e r r o r E x i t ; Oops !
241
242 inRange

4.5 A Better Ql2utf8 25

243 move . b d1 , d2 ; D2 = b y t e j u s t r e a d
244 s u b i . b #$80 , d2 ; A d j u s t f o r t a b l e i n d e x
245 e x t .w d2 ; Word s i z e needed
246 l s l .w #1 , d2 ; Double D2 f o r O f f s e t
247 move . b 0 (a2 , d2 .w) , d1 ; F i r s t b y t e
248 b s r . s w r i t e B y t e ; Send i t o u t p u t
249 move . b 1 (a2 , d2 .w) , d1 ; Second b y t e
250 b r a oneByte ; Wr i t e i t and go around
251
252
253 ;−−
254 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
255 ;−−
256 a l l D o n e
257 moveq #0 , d0
258
259 ;−−
260 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
261 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
262 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
263 ;−−
264 e r r o r E x i t
265 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
266
267 ;−−
268 ; K i l l m ys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
269 ;−−
270 s u i c i d e
271 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
272 moveq #me , d1
273 t r a p #1
274
275 ;−−
276 ; The f o l l o w i n g t a b l e c o n t a i n s t h e two b y t e s e q u e n c e s r e q u i r e d f o r
277 ; QL c h a r a c t e r s above $80 . These a r e a l l 2 b y t e s i n UTF8 , so q u i t e a
278 ; s i m p l e c a s e . (Not when c o n v e r t i n g UTF8 t o QL though !) There a r e 60
279 ; QL c h a r a c t e r s which c o n v e r t t o two b y t e UTF8 c h a r a c t e r s .
280 ;−−
281 u t f 8
282 dc .w $c3a4 ; a umlau t
283 dc .w $c3a3 ; a t i l d e
284 dc .w $c3a2 ; a c i r c u m f l e x
285 dc .w $c3a9 ; e a c u t e
286 dc .w $c3b6 ; o umlau t
287 dc .w $c3b5 ; o t i l d e
288 dc .w $c3b8 ; o s l a s h
289 dc .w $c3bc ; u umlau t
290 dc .w $c3a7 ; c c e d i l l a
291 dc .w $c3b1 ; n t i l d e
292 dc .w $c3a6 ; ae l i g a t u r e
293 dc .w $c593 ; oe l i g a t u r e
294 dc .w $c3a1 ; a a c u t e
295 dc .w $c3a0 ; a g r a v e
296 dc .w $c3a2 ; a c i r c u m f l e x
297 dc .w $c3ab ; e umlau t
298 dc .w $c3a8 ; e g r a v e

26 Chapter 4. Feedback on Issue 7

299 dc .w $c3aa ; e c i r c u m f l e x
300 dc .w $ c 3 a f ; i umlau t
301 dc .w $c3ad ; i a c u t e
302 dc .w $c3ac ; i g r a v e
303 dc .w $c3ae ; i c i r c u m f l e x
304 dc .w $c3b3 ; o a c u t e
305 dc .w $c3b2 ; o g r a v e
306 dc .w $c3b4 ; o c i r c u m f l e x
307 dc .w $c3ba ; u a c u t e
308 dc .w $c3b9 ; u g r a v e
309 dc .w $c3bb ; u c i r c u m f l e x
310 dc .w $ceb2 ; B as i n s s (German)
311 dc .w $c2a2 ; Cent
312 dc .w $c2a5 ; Yen
313 dc .w $0000 ; Grave a c c e n t − s i n g l e b y t e
314 dc .w $c384 ; A umlau t
315 dc .w $c383 ; A t i l d e
316 dc .w $c385 ; A c i r c l e
317 dc .w $c389 ; E a c u t e
318 dc .w $c396 ; O umlau t
319 dc .w $c395 ; O t i l d e
320 dc .w $c398 ; O s l a s h
321 dc .w $c39c ; U umlau t
322 dc .w $c387 ; C c e d i l l a
323 dc .w $c391 ; N t i l d e
324 dc .w $c386 ; AE l i g a t u r e
325 dc .w $c592 ; OE l i g a t u r e
326 dc .w $ceb1 ; a l p h a
327 dc .w $ceb4 ; d e l t a
328 dc .w $ceb8 ; t h e t a
329 dc .w $cebb ; lambda
330 dc .w $c2b5 ; micro (mu?)
331 dc .w $cf80 ; PI
332 dc .w $cf95 ; o p i p e
333 dc .w $c2a1 ; ! u p s i d e down
334 dc .w $c2bf ; ? u p s i d e down
335 dc .w $0000 ; Euro
336 dc .w $c2a7 ; S e c t i o n mark
337 dc .w $c2a4 ; Cur rency symbol
338 dc .w $c2ab ; <<
339 dc .w $c2bb ; >>
340 dc .w $c2ba ; Degree
341 dc .w $c3b7 ; D i v id e

Listing 4.1: Wolfgang’s improved ql2utf8 Utility

4.6 A Better Utf82ql

1 ;−−
2 ; UTF82QL :
3 ;
4 ; Th i s f i l t e r c o n v e r t s UTF8 t e x t f i l e s from Linux , Mac or Windows t o
5 ; t o t h e SMSQ c h a r a c t e r s e t .
6 ;
7 ;

4.6 A Better Utf82ql 27

8 ; EX u t f 8 2 q l 2 _ b i n , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
9 ;

10 ;−−
11 ; 2 8 / 0 9 / 2 0 1 9 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t .
12 ; 0 7 / 1 0 / 2 0 1 9 WLenerz Many i m p r o v e n t s .
13 ;−−
14 ; (c) Norman Dunbar , Wolfgang Lenerz , 2019 . P e r m i s s i o n g r a n t e d f o r
15 ; u n l i m i t e d use o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d .
16 ; J u s t e n j o y !
17 ;−−
18
19 ; How many c h a n n e l s do I want ?
20 numchans equ 2 ; How many c h a n n e l s r e q u i r e d ?
21
22
23 ; S t a c k s t u f f .
24 s o u r c e I d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
25 d e s t I d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
26
27 ; Othe r V a r i a b l e s
28 u t f8Pound equ $c2a3 ; UTF8 Pound s i g n
29 qlPound equ 96 ; QL Pound s i g n
30
31 u t f 8 G r a v e equ 96 ; UTF8 Grave code
32 q lGrave equ 159 ; QL Grave code
33
34 u t f 8 C o p y r i g h t equ $c2a9 ; UTF8 c o p y r i g h t
35 q l C o p y r i g h t equ 127 ; QL c o p y r i g h t s i g n
36
37 q lE u r o equ 181 ; SMSQ Euro symbol
38
39 e r r _ e x p equ −17
40 e r r _ b p equ −15
41 e r r _ e o f equ −10
42 e r r _ o r equ −4
43 me equ −1
44 t i m e o u t equ −1
45
46 ;−−
47 ; Uncomment t h e f o l l o w i n g i f you a r e u s i n g QMAC as your a s s e m b l e r .
48 ;−−
49 ; i o _ f b y t e equ 1 ; F e t c h one b y t e
50 ; i o _ s b y t e equ 5 ; Send one b y t e
51 ; m t _ f r j o b equ 5 ; Force remove j o b s
52 ;−−
53
54
55 ; ==
56 ; Here b e g i n s t h e code .
57 ;−−
58 ; S t a c k on e n t r y :
59 ;
60 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
61 ; $02 (a7) = Source f i l e c h a n n e l i d .
62 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
63 ; ==

28 Chapter 4. Feedback on Issue 7

64 s t a r t b r a . s c h e c k S t a c k
65
66 dc . l $00
67 dc .w $4afb
68 name dc .w name_end−name−2
69 dc . b ’UTF82QL ’
70 name_end equ *
71
72 v e r s i o n dc .w vers_end−v e r s i o n −2
73 dc . b ’ V e r s i o n 1 . 0 0 ’
74 v e r s _ e n d equ *
75
76
77 b a d _ p a r a m e t e r
78 moveq # e r r_bp , d0 ; Guess !
79 b r a e r r o r E x i t ; Die h o r r i b l y
80
81
82 ;−−
83 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s − any
84 ; t h i n g o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER e r r o r on
85 ; e x i t from EW (b u t n o t from EX) .
86 ;−−
87 c h e c k S t a c k
88 cmpi .w #numchans , (a7) ; Two c h a n n e l s i s a must
89 bne . s b a d _ p a r a m e t e r ; Oops
90
91 ;−−
92 ; I n i t i a l i s e a c o u p l e o f r e g i s t e r s t h a t w i l l keep t h e i r v a l u e s a l l
93 ; t h r o u g h t h e r e s t o f t h e code .
94 ;−−
95 q l 2 u t f 8
96 l e a u t f 8 , a2 ; P r e s e r v e d t h r o u g h o u t
97 moveq # t i m e o u t , d3 ; Timeout , a l s o P r e s e r v e d
98 move . l s o u r c e I d (a7) , a4 ; Channel ID f o r UTF8 i n p u t f i l e
99 move . l d e s t I d (a7) , a5 ; Channel ID f o r QL o u t p u t f i l e

100
101 ;−−
102 ; The main loop s t a r t s h e r e . Read a s i n g l e byte , check f o r EOF e t c .
103 ;−−
104 readLoop
105 b s r r e a d B y t e ; Read one b y t e
106 beq . s t e s t B i t 7 ; No e r r o r s i s good .
107 cmpi . l # e r r _ e o f , d0 ; A l l done ?
108 beq a l l D o n e ; Yes .
109 b r a e r r o r E x i t ; Oops !
110
111 ;−−
112 ; T e s t t h e t o p b i t h e r e . I f i t i s ze ro , we a r e good f o r most s i n g l e
113 ; b y t e c h a r a c t e r s , o t h e r w i s e i t i s p o t e n t i a l l y m u l t i−b y t e .
114 ;−−
115 t e s t B i t 7
116 b t s t #7 , d1 ; B i t 7 s e t ?
117 bne . s m u l t i B y t e s ; M u l t i Byte c h a r a c t e r i f so
118
119 ;−−

4.6 A Better Utf82ql 29

120 ; In UTF8 , t h e Grave a c c e n t (b a c k t i c k) i s a s i n g l e b y t e c h a r a c t e r b u t
121 ; t h e b y t e v a l u e doesn ’ t c o r r e s p o n d t o t h a t on t h e QL . On UTF8 i t i s
122 ; $60 (9 6) b u t on t h e QL i t i s $9F (1 5 9) so , t h i s i s a n o t h e r S i r
123 ; C l i v e i n d u c e d e x c e p t i o n !
124 ;−−
125 t e s t G r a v e
126 cmpi . b # u t f8Grave , d1 ; Got a g r a v e !
127 bne . s oneByte ; Must be a s i n g l e b y t e i f n o t a pound .
128
129 go tGrave
130 move . b # qlGrave , d1 ; Wr i t e a g r a v e c h a r a c t e r
131
132 ;−−
133 ; The b y t e r e a d i s a v a l i d s i n g l e b y t e c h a r a c t e r so i t has t h e e x a c t
134 ; same code i n t h e QL’ s v a r i a t i o n o f ASCII , j u s t w r i t e i t o u t .
135 ;−−
136 oneByte
137 b s r w r i t e B y t e ; Wr i t e t h e b y t e o u t
138 b r a . s readLoop ; And c o n t i n u e .
139
140
141 ;−−
142 ; Most o f t h e r e m a i n i n g c h a r a c t e r s w i l l be two b y t e s i n UTF8 and one
143 ; b y t e on t h e QL . There a r e a few e x c e p t i o n s though − t h e Euro and
144 ; t h e f o u r ar row keys a r e t h r e e b y t e s long i n UTF8 .
145 ;−−
146 m u l t i B y t e s
147 move . b d1 , d2 ; Copy c h a r a c t e r code
148 a n d i . b #%11110000 , d2 ; Keep t o p f o u r b i t s
149 cmpi . b #%11000000 , d2 ; Two b y t e s ?
150 bne . s t e s t T h r e e ; Yes .
151
152 ;−−
153 ; At t h i s p o i n t we s h o u l d have a UTF8 two b y t e c h a r a c t e r b u t we on ly
154 ; have t h e f i r s t b y t e i n D1 . We need t h e second b y t e a l s o , so r e a d i t
155 ; and check t h a t i t i s i n d e e d v a l i d .
156 ;−−
157 twoBytes
158 move . b d1 , d2 ; Save t h e l e a d i n g b y t e
159 b s r r e a d B y t e ; Read t h e second b y t e
160 l s l .w #8 , d2 ; S h i f t f i r s t b y t e upwards
161 or . b d1 , d2 ; And add t h e new b y t e
162
163 ;−−
164 ; E x c e p t i o n c h e c k i n g . UTF8 codes $C2A3 f o r t h e UK Pound and $C2A9 f o r
165 ; c o p y r i g h t , a r e n o t i n t h e t a b l e . They a r e QL codes $60 (9 6) and $7F
166 ; (1 2 7) and a r e e x c e p t i o n s t o t h e r u l e t h a t a QL code l e s s t h a n 128
167 ; a lways has a one b y t e code i n UTF8 − t h e y a r e bo th two b y t e s .
168 ;−−
169 t e s t P o u n d
170 cmpi .w # ut f8Pound , d2 ; Got a UK Pound ?
171 bne . s t e s t C o p y r i g h t ; No
172
173 gotPound
174 move . b # qlPound , d1 ; QL Pound code
175 b r a . s oneByte ; Wr i t e i t o u t & loop around

30 Chapter 4. Feedback on Issue 7

176
177 t e s t C o p y r i g h t
178 cmpi .w # u t f 8 C o p y r i g h t , d2 ; Got a c o p y r i g h t ?
179 bne . s doScan ; No
180
181 g o t C o p y r i g h t
182 move . b # q l C o p y r i g h t , d1
183 b r a . s oneByte ; Wr i t e i t o u t & loop around
184
185 ;−−
186 ; Ok , e x c e p t i o n s p r o c e s s e d , do t h e r e m a i n i n g two b y t e c h a r a c t e r s .
187 ;−−
188 doScan
189 b s r s c a n T a b l e ; I s t h i s v a l i d UTF8?
190 bne . s inva l idUTF8 ; Nope
191
192 val idUTF8
193 move . b d0 , d1 ; Get t h e c h a r a c t e r code
194 b s r . s w r i t e B y t e ; Wr i t e i t o u t
195 b r a readLoop ; And c o n t i n u e .
196
197 inva l idUTF8
198 moveq # e r r _ e x p , d0 ; E r r o r i n e x p r e s s i o n
199 b r a e r r o r E x i t ; Ba le o u t .
200
201 ;−−
202 ; We a r e i n t e r e s t e d i n a few t h r e e b y t e c h a r a c t e r s , so we check t h o s e
203 ; n e x t . These a r e i d e n t i f i e d by t h e t o p n i b b l e o f t h e f i r s t c h a r a c t e r
204 ; r e a d i n b e i n g 1110 .
205 ;−−
206 t e s t T h r e e
207 cmpi . b #%11100000 , d2 ; Three b y t e s ?
208 bne . s inva l idUTF8 ; No .
209
210 ;−−
211 ; At t h i s p o i n t we s h o u l d have a UTF8 t h r e e b y t e c h a r a c t e r b u t we
212 ; on ly have t h e f i r s t b y t e i n D1 . We need t h e second b y t e a l s o , so
213 ; r e a d i t and check t h a t i t i s i n d e e d v a l i d . Then g e t t h e t h i r d b y t e .
214 ; A l l our t h r e e b y t e c h a r a c t e r s s h o u l d have $E2 i n t h e f i r s t b y t e .
215 ;
216 ; The Euro i s $E282AC .
217 ; The Arrows a r e $E2869x where ’x ’ i s 0 ,1 ,2 o r 3 .
218 ;−−
219 t h r e e B y t e s
220 cmpi . b #$e2 , d1 ; V a l i d t h r e e b y t e ?
221 bne . s inva l idUTF8 ; Looks u n l i k e l y .
222
223 move . b d1 , d2 ; Save t h e f i r s t b y t e
224 b s r . s r e a d B y t e ; Get t h e second b y t e
225 cmpi . b #$82 , d1 ; Euro second b y t e ?
226 beq . s t h r e e V a l i d ; Yes
227 cmpi . b #$86 , d1 ; Arrow second b y t e ?
228 bne . s inva l idUTF8 ; Sadly , no , e r r o r o u t .
229
230 t h r e e V a l i d
231 l s l .w #8 , d2 ; S h i f t f i r s t b y t e upwards

4.6 A Better Utf82ql 31

232 or . b d1 , d2 ; And add t h e new b y t e
233 b s r . s r e a d B y t e ; Get t h e t h i r d b y t e
234 cmpi .w # $e282 , d2 ; Euro p o s s i b l y ?
235 bne . s t h r e e A r r o w s ; No , t r y a r r ow s
236
237 ;−−
238 ; We have r e a d $e282 so i f we g e t $ac next , we have t h e eu ro . I f n o t
239 ; i t ’ s an e r r o r i n t h e UTF8 c h a r a c t e r s t h a t t h e QL u n d e r s t a n d s .
240 ;−−
241 t h r e e E u r o
242 cmpi . b # $ac , d1 ; Need t h i s f o r t h e Euro
243 bne . s inva l idUTF8 ; No , e r r o r o u t a g a i n .
244 move . b # qlEuro , d1 ; QL Euro code
245 b s r . s w r i t e B y t e ; Wr i t e i t o u t
246 b r a readLoop ; And c o n t i n u e .
247
248
249 ;−−
250 ; The QL ar ro w s a r e $BC , $BD , $BE and $BF (l e f t , r i g h t , up , down) .
251 ; The UTF8 , $E2869x where ’x ’ i s 0 , 2 , 1 o r 3 t o c o r r e s p o n d wi th t h e
252 ; o r d e r o f t h e QL arrow codes .
253 ;−−
254 t h r e e A r r o w s
255 cmpi .w # $e286 , d2 ; Got a p o t e n t i a l a r row code ?
256 bne . s inva l idUTF8 ; F r a i d not , e r r o r o u t .
257 s u b i . b #$90 , d1 ; D1 i s now 0−3 f o r v a l i d a r r o ws
258 bmi . s inva l idUTF8 ; Oops , i t went n e g a t i v e
259 cmpi . b #3 , d1 ; H i g h e s t a r row code
260 b h i . s inva l idUTF8 ; Oops , i n v a l i d ar row code .
261 a d d i . b #$bc , d1 ; Conve r t t o QL arrow code .
262 b s r . s w r i t e B y t e ; Wr i t e i t o u t
263 b r a readLoop ; And c o n t i n u e .
264
265
266 ;−−
267 ; A s m a l l b u t p e r f e c t l y formed s u b r o u t i n e t o send t h e b y t e i n D1 t o
268 ; t h e o u t p u t QL f i l e .
269 ; On Ent ry , A0 = i n p u t c h a n n e l ID and A3 = o u t p u t c h a n n e l ID .
270 ; On e x i t , D0 = 0 , Z s e t .
271 ; On e r r o r , n e v e r r e t u r n s .
272 ;−−
273 w r i t e B y t e
274 move . l a5 , a0 ; Get t h e c o r r e c t c h a n n e l ID
275 moveq # i o _ s b y t e , d0 ; Send one b y t e
276 t r a p #3
277 t s t . l d0 ; OK?
278 bne . s e r r o r E x i t ; Oops !
279 r t s
280
281 ;−−
282 ; Another p e r f e c t l y formed s u b r o u t i n e t o r e a d one b y t e i n t o D1
283 ; from t h e i n p u t UTF8 f i l e .
284 ; On Ent ry , A0 = o u t p u t c h a n n e l ID and A3 = i n p u t c h a n n e l ID .
285 ; On e x i t , e r r o r codes i n D0 , Z s e t i f no e r r o r and D1 . B = c h a r a c t e r
286 ; j u s t r e a d .
287 ;−−

32 Chapter 4. Feedback on Issue 7

288 r e a d B y t e
289 move . l a4 , a0 ; Get t h e c o r r e c t c h a n n e l ID
290 moveq # i o _ f b y t e , d0 ; F e t c h one b y t e
291 t r a p #3 ; Do i n p u t
292 t s t . l d0 ; OK?
293 r t s
294
295 ;−−
296 ; Scan t h e UTF8 t a b l e l o o k i n g f o r t h e word i n D2 . I f found , we have
297 ; t h e t a b l e o f f s e t i n D0 and t h a t i s t h e n h a l v e d t o g e t t h e i n d e x which
298 ; i s s t i l l $80 below t h e c o r r e c t c h a r a c t e r code − we add t o c o n v e r t .
299 ; R e t u r n s wi th D0 = t h e c h a r a c t e r code , o r $FFFF t o show t h e end was
300 ; r e a c h e d and we a p p e a r t o have an i n v a l i d two b y t e c h a r a c t e r . A2
301 ; h o l d s t h e t a b l e a d d r e s s . D7 i s a working r e g i s t e r .
302 ;−−
303 s c a n T a b l e
304 move . l a2 , a3 ; Get s t a r t o f t a b l e
305 move .w #59 , d0 ; There a r e 60 e n t r i e s i n t h e t a b l e
306
307 scanLoop
308 cmp .w (a3) + , d2 ; Found i t y e t ?
309 beq . s scanDone ; Yes
310 dbf d0 , scanLoop ; No , t r y a g a i n
311 r t s ; Not found , Z n o t s e t .
312
313 scanDone
314 move . l a3 , d0 ; Address i n t a b l e + 2
315 sub . l a2 , d0 ; Address now t h e O f f s e t + 2
316 subq .w #2 , d0 ; A d j u s t e d t o c o r r e c t o f f s e t
317 l s r .w #1 , d0 ; Conver t o i n d e x
318 add .w #$80 , d0 ; Now c o r r e c t c h a r a c t e r code
319 cmp .w d0 , d0 ; S e t s Z f l a g
320 r t s
321
322 ;−−
323 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
324 ;−−
325 a l l D o n e
326 moveq #0 , d0
327
328 ;−−
329 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a a
330 ; f o r c i b l e remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e e r r o r i n
331 ; SuperBASIC , b u t EXEC/EX w i l l n o t .
332 ;−−
333 e r r o r E x i t
334 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
335
336 ;−−
337 ; K i l l m ys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
338 ;−−
339 s u i c i d e
340 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
341 moveq #me , d1
342 t r a p #1
343

4.6 A Better Utf82ql 33

344 ;−−
345 ; The f o l l o w i n g t a b l e c o n t a i n s t h e two b y t e s e q u e n c e s r e q u i r e d f o r
346 ; QL c h a r a c t e r s from c h a r a c t e r $80 onwards . Those f l a g g e d as $FFFF
347 ; a r e e x c e p t i o n s , d e a l t w i th i n t h e code . There a r e no e n t r i e s f o r
348 ; t h e ar row keys as t h e y would s imp ly be z e r o words a t t h e end of t h e
349 ; t a b l e .
350 ;−−
351 u t f 8
352 dc .w $c3a4 ; a umlau t
353 dc .w $c3a3 ; a t i l d e
354 dc .w $c3a2 ; a c i r c u m f l e x
355 dc .w $c3a9 ; e a c u t e
356 dc .w $c3b6 ; o umlau t
357 dc .w $c3b5 ; o t i l d e
358 dc .w $c3b8 ; o s l a s h
359 dc .w $c3bc ; u umlau t
360 dc .w $c3a7 ; c c e d i l l a
361 dc .w $c3b1 ; n t i l d e
362 dc .w $c3a6 ; ae l i g a t u r e
363 dc .w $c593 ; oe l i g a t u r e
364 dc .w $c3a1 ; a a c u t e
365 dc .w $c3a0 ; a g r a v e
366 dc .w $c3a2 ; a c i r c u m f l e x
367 dc .w $c3ab ; e umlau t
368 dc .w $c3a8 ; e g r a v e
369 dc .w $c3aa ; e c i r c u m f l e x
370 dc .w $ c 3 a f ; i umlau t
371 dc .w $c3ad ; i a c u t e
372 dc .w $c3ac ; i g r a v e
373 dc .w $c3ae ; i c i r c u m f l e x
374 dc .w $c3b3 ; o a c u t e
375 dc .w $c3b2 ; o g r a v e
376 dc .w $c3b4 ; o c i r c u m f l e x
377 dc .w $c3ba ; u a c u t e
378 dc .w $c3b9 ; u g r a v e
379 dc .w $c3bb ; u c i r c u m f l e x
380 dc .w $ceb2 ; B as i n s s (German)
381 dc .w $c2a2 ; Cent
382 dc .w $c2a5 ; Yen
383 dc .w $ f f f f ; Grave a c c e n t − s i n g l e b y t e
384 dc .w $c384 ; A umlau t
385 dc .w $c383 ; A t i l d e
386 dc .w $c385 ; A c i r c l e
387 dc .w $c389 ; E a c u t e
388 dc .w $c396 ; O umlau t
389 dc .w $c395 ; O t i l d e
390 dc .w $c398 ; O s l a s h
391 dc .w $c39c ; U umlau t
392 dc .w $c387 ; C c e d i l l a
393 dc .w $c391 ; N t i l d e
394 dc .w $c386 ; AE l i g a t u r e
395 dc .w $c592 ; OE l i g a t u r e
396 dc .w $ceb1 ; a l p h a
397 dc .w $ceb4 ; d e l t a
398 dc .w $ceb8 ; t h e t a
399 dc .w $cebb ; lambda

34 Chapter 4. Feedback on Issue 7

400 dc .w $c2b5 ; micro (mu?)
401 dc .w $cf80 ; PI
402 dc .w $cf95 ; o p i p e
403 dc .w $c2a1 ; ! u p s i d e down
404 dc .w $c2bf ; ? u p s i d e down
405 dc .w $ f f f f ; Euro
406 dc .w $c2a7 ; S e c t i o n mark
407 dc .w $c2a4 ; Cur rency symbol
408 dc .w $c2ab ; <<
409 dc .w $c2bb ; >>
410 dc .w $c2ba ; Degree
411 dc .w $c3b7 ; D i v id e
412
413 dc .w $0000 ; End of t a b l e

Listing 4.2: Wolfgang’s improved utf82ql Utility

5. Reversing Bits

Many years ago, I needed a routine to reverse the bits in a register so that bit 0 ended up in bit 31,
bit 31 was in bit 0 and so on. I think I asked on the QL Mailing List and the responses I received
were pretty similar to the method I knew about - shifting bits right from the input register through
the Carry Flag and shifting left into another register. It worked fine but I always thought that there
would be a better solution. I never found one.

The other day, while doing some embedded (aka Arduino) fiddling, I found a piece of code to reverse
the order of bits in an 8 bit register, which is what the Arduino’s ATmega328P microcontroller has.
I had a look at the code and decided that I could adapt it to reverse all 32 bits on a QL register. This
is what I came up with.

Bear in mind that in order to reverse 32 bits through the Carry Flag you only need three registers -
the source, the destination and a counter for the 32 shifts for each register. That takes a total of 64
one bit shifts to reverse all the bits.

5.1 Reversing 2 Bits

Might as well start easy. If we start with the value 10 in our two bit register, we can reverse the
value to 01 as follows:

• AND 10 with 10;
• Shift the result right by one bit;
• AND 10 with 01;
• Shift the result left by 1 bit;
• OR the results of the two AND operations.

So much for the theory, let’s see if it works:

10 AND wi th 10 = 1 0 .
10 >> 1 = 0 1 .

36 Chapter 5. Reversing Bits

10 AND wi th 01 = 0 0 .
00 << 1 = 0 0 .

10 OR 00 = 1 0 .

Easy? We started with 10 and finished with 01, job done, we reversed the two bits. So far so good,
lets up things a bit and see what happens with 4 bits.

Note: You can, if you wish, shift first then AND, it still works.

5.2 Reversing 4 Bits

To reverse 4 bits, we would do something similar. If we start with the value 1101, then all we have
to do is:

• AND 1101 with 1100;
• Shift the result right by two bits;
• AND 1101with 0011;
• Shift the result left by two bits;
• OR the two results of the AND operations.

Again, let’s see if it works:

1101 AND 1100 = 1100 .
1100 >> 2 = 0011 .

1101 AND 0011 = 0001 .
0001 << 2 = 0100 .

0011 OR 0100 = 0111 .

Oops! That’s not quite right. All we have really done, and indeed, in the first two bit example, is
swap the top two bits with the bottom two bits, we have not reversed them. We need to now swap
the two pairs of two bit values in the above result, 0111. Let’s continue.

We are currently have 0111 as our intermediate result. This is 2 two bit values, 01 and 11. We know
that swapping the 2 bits in a two bit value reverses them. Can we now reverse the pair of two bit
values at the same time?

0111 AND 1010 = 0010 .
0010 >> 1 = 0001 .

0111 AND 0101 = 0101 .
0101 << 1 = 1010 .

0001 OR 1010 = 1011 .

So, we started with 1101, swapped the two pairs of two bit values over, then reversed both bits in
each pair to receive the result 1011 which is a complete bit reversal of the original 4 bits.

5.3 Reversing 8 Bit values 37

5.3 Reversing 8 Bit values

In theory then, we should be able to start with 8 bits, swap the two pairs of 4 bits over, then swap
the 4 pairs of two bit values over, then reverse the bits in those 4 two bit values.

To swap the 4 bit values we follow the same principle as above:

• AND the value with 11110000;
• Shift the result right by 4 bits;
• AND the value with 00001111;
• Shift the result left by four bits;
• OR the two results of the AND operations;
• Then carry out the steps for a 4 bit swap but do two at a time;
• Swap/reverse the bits in each of the resulting two bit values.

Does it work? Lets try with $C9 or 11001001:

11001001 AND 11110000 = 11000000 .
11000000 >> 4 = 00001100 .

11001001 AND 00001111 = 00001001 .
00001001 << 4 = 10010000 .

00001100 OR 10010000 = 10011100 .

That’s the 2 four bit values exchanged, but not yet reversed. We continue with the process to swap
the 2 two bit values in each of the 4 bit values:

10011100 AND 11001100 = 10001100 .
10001100 >> 2 = 00100011 .

10011100 AND 00110011 = 00010000 .
00010000 << 2 = 01000000 .

00100011 OR 01000000 = 01100011 .

Now we simply reverse the bits in each of the 4 two bit values:

01100011 AND 10101010 = 00100010 .
00100010 >> 1 = 00010001 .

01100011 AND 01010101 = 01000001 .
01000001 << 1 = 10000010 .

00010001 OR 10000010 = 10010011 .

And that’s working correctly too, 11001001 has been bit reversed to become 10010011.

5.4 Reversing 16 Bit Values

With a 16 bit value, we would:

38 Chapter 5. Reversing Bits

• Swap the pair of 8 bit values around;
• Swap the 4 four bit values around;
• Swap the 8 two bit values;
• Reverse the 8 two bit values.

Do you see a pattern developing? To swap the two n/2 bit values in an ’n’ bit value:

• AND the value with a mask of n/2 ones and n/2 zeros;
• Shift the value right by n/2 bits;
• AND the value with a mask of n/2 zeros and n/2 ones;
• Shift the value left by n/2 bits;
• OR the two results to obtain a new value where the two n/2 bit values have been swapped.

This works all the way down until the final processing of two bit values and swapping those over
actually reverses the bit in the pairs of bits, giving the final result.

5.5 Reversing 32 Bit Values

You should be able to work out the bit shifts and masks required to swap around the two 16 bit
values in a 32 bit value? If you said “Yes, use the SWAP instruction” you would be correct - there is
no need to do the mask and shift dance to swap them over, we already have a single instruction to
do exactly that!

It’s time for some code. Listing 5.1 is the comments at the head of the file which explains how to
call the demo code from SuperBASIC or Assembly, and how to extract the result.

1 ; A s m a l l f u n c t i o n t o r e v e r s e t h e b i t s i n a long word .
2 ; So , 1111 1111 0000 0000 1100 1100 1010 1010 w i l l become
3 ; 0101 0101 0011 0011 0000 0000 1111 1111
4 ;
5 ; Norman Dunbar
6 ; June 25 2020 .
7 ;
8 ; C a l l t h i s code from SuperBASIC as f o l l o w s :
9 ;

10 ; CALL a d d r e s s , v a l u e
11 ; PRINT b in$ (PEEK_L (a d d r e s s + 2) , 32)
12 ;
13 ; Where ’ a d d r e s s ’ i s t h e a d d r e s s o f t h e l a b e l ’ e n t r y ’ .
14 ;
15 ; To use t h e code i n Assembly :
16 ;
17 ; C a l l ’ r e v e r s e 3 2 B i t s ’ w i th D0 . L as t h e v a l u e t o r e v e r s e .
18 ; The code e x i t s w i th t h e r e v e r s e d b i t s i n D0 . L .
19 ;

Listing 5.1: Reverse32_asm - Header Comments.

Listing 5.2 is the SuperBASIC code entry point. The code should be CALLed and passed a single
value to be bit reversed.

20 e n t r y
21 b r a . s s t a r t
22
23 saveD0
24 dc . l 1

5.5 Reversing 32 Bit Values 39

25
26 s t a r t
27 move . l d1 , d0
28 b s r . s r e v e r s e 3 2 B i t s
29 l e a saveD0 , a3
30 move . l d0 , (a3)
31 moveq #0 , d0
32 r t s

Listing 5.2: Reverse32_asm - SuperBASIC Entry Point.

As you cannot pass a value to register D0 from SuperBASIC, the value in D1.L is copied into D0.L
and the bit reversal code in Listing 5.3 is called to reverse the bits. The result is extracted from
D0.L and stored in the long word at label saveD0 from where it can be PEEK_L’d by SuperBASIC
to retrieve the reversed bit value.

The code for the actual bit reversal is shown in Listing 5.3. This routine starts by saving all the
working registers and testing D0 for zero. Zero is already “reversed” so we bale out early if this
special case is detected.

If we intend to carry on, the table of mask values is assigned to A0 and we start by swapping over
the two 16 bit values in the 32 bit register. That’s the simple bit out of the way. The masks we have
in the table are those we will use to swap over 16 bit values, then 8, then 4 and finally the 16 pairs
of two bit values.

Register D4 holds the number of shifts we need to do at each step in the process.

33 r e v e r s e 3 2 B i t s
34 movem . l d1−d4 / a0 ,−(a7) ; Save t h e worke r s
35 t s t . l d0 ; Zero ?
36 beq . s r e v e r s e D o n e ; Yes , done
37 l e a maskTable , a0 ; Mask t a b l e
38 swap d0 ; The easy 16 b i t s a r e swapped . . .
39 moveq #8 , d4 ; S h i f t c o u n t e r
40
41 r e v e r s e L o o p
42 move . l (a0) + , d1 ; Get f i r s t / n e x t mask
43 beq . s r e v e r s e D o n e ; F i n i s h e d
44 move . l d1 , d2 ; Copy mask
45 n o t . l d2 ; I n v e r t mask copy
46 move . l d0 , d3 ; Copy v a l u e
47 and . l d1 , d0 ; Mask
48 and . l d2 , d3 ; I n v e r t e d mask
49 l s r . l d4 , d0 ; S h i f t t o p down
50 l s l . l d4 , d3 ; S h i f t bo t tom up
51 or . l d3 , d0 ; Combine t h e b i t s
52 l s r . b #1 , d4 ; Reduce s h i f t c o u n t
53 b r a . s r e v e r s e L o o p ; And a g a i n
54
55 r e v e r s e D o n e
56 movem . l (a7) + , d1−d4 / a0 ; R e s t o r e worke r s
57 r t s
58
59 maskTable
60 dc . l $FF00FF00 ; 1111111100000000 1111111100000000
61 dc . l $F0F0F0F0 ; 1111000011110000 1111000011110000
62 dc . l $CCCCCCCC ; 1100110011001100 1100110011001100

40 Chapter 5. Reversing Bits

63 dc . l $AAAAAAAA ; 1010101010101010 1010101010101010
64 dc . l 0

Listing 5.3: Reverse32_asm - Reverse32Bits Routine.

The code at reverseLoop does all the hard work. On entry A0.L points at the first mask we need, so
that is loaded into D1.L and copied immediately to register D2.L where the bits are inverted to give
the second mask we need. The maskTable only stores one of each pair of mask values. If the mask
value is zero, we are done and we exit the loop.

The value to be reversed is copied into D3.L and D0.L is AND.L’d with the mask in D1.L. That gives
the first result, prior to the shifts. D3.L is AND.L’d with the inverted mask in D2.L which gives the
second result, prior to the shifts.

Both registers are then shifted in the appropriate direction by the number of bits in D4.B before
the value in D3.L is OR.L’d into D0.L. All that remains is to divide the shift count in D4.B by two
before we jump back into the top of the loop.

When we are all done reversing the bits in D0.L, we restore the working registers and return to the
caller with the reversed bits in register D0.L.

The table at maskTable holds 4 masks which are used when swapping over the two n/2 bit values
in an n bit value. As you can see only the mask for the first AND.L instruction is stored. This
is because the mask used in the second AND.L instruction is the inverted value, and the NOT.L
instruction will give us that mask.

6. Powers of Two

Some more messing about with a bit of code I’m writing for my Arduino required a given number
to be adjusted to the next power of two, unless that number was already a power of two. So, the
value 6 is not a power of two and would result in a new value of 8, while 4 is already a power of
two and thus, would not be changed.

I managed to get this task accomplished – it was for a circular buffer which can be set up at any size,
but the size must be a power of two, and fit into 8 bits, unsigned – in case you were wondering!

As I’m a bit short on ideas for stuff to write about for this eComic, I wondered how easy it would
be to convert a few hundred bytes of C++ code into Assembly Language? With a 68020 processor,
or QPC2, and George’s GWASS assembler, it was rather simple, and took far less bytes than on my
Arduino! It was a little more difficult with a 68008 and GWASL though.

6.1 The Algorithm

The way to determine the next power of 2 value for a number is reasonably simple, but there’s a
catch, a number might already be a power of 2. This is “easy” to determine as there will be a single
set bit in the number, so we could count the set bits to determine if the number is already a power,
and return it if so. Too difficult!

• Subtract 1 from the number;
• Find the most significant set bit;
• Work out a value for a number with just that bit set;
• Return double the number.

6.1.1 How it Works

Ok, we know what to do, how does it work? And why subtract 1 at the start? Let us assume 8 bit
values, for simplicity, and to stop me typing 32 ones or zeros across the page!

42 Chapter 6. Powers of Two

If we take an example of the value 65, this has the binary value 0100 0001. The highest set bit is bit
6 for a value of 64. But as there are other bits set in the number, 65 is obviously greater than 64.
The next power of 2 greater than 65 is 128. Even though we didn’t do the required subtraction, we
would correctly return 2∗64, or 128.

If, on the other foot, the value we started with was 64, it has a binary value of 0100 0000. Returning
2∗64 would be 128, again, but this would be incorrect as 64 is already a power of 2, so the correct
answer should be 64.

So, adding in the subtraction this time, we start with 64 – 0100 0000 – and subtract 1 to give 63, or
0011 1111. The highest bit set here is bit 5, for a value of 32. Returning 2∗32 is indeed 64. But
does that work with a higher value?

Taking 65 again, we still have a binary value of 0100 0001. When we subtract 1 we get 64 – 0100
0000 – returning 2∗64 does indeed still give the correct result of 128.

The algorithm works. Ok, what about zero? Does that end case work?

Subtracting 1 from zero gives -1, or 1111 1111. The most significant bit set is bit 7 or 128.
Returning 2∗128 would be 256, which has the lower 8 bits clear, or zero. The closest 8 bit power
of 2 to zero is actually zero. This is incorrect as the closest power of 2 to zero is 20 or 1. Hmmm.

In my C++ code, I tested for this corner case, and simply returned zero. However, in the code in
Listing 6.1, it actually doesn’t need a corner case check as passing zero does correctly result in 1
being returned. Spooky!

6.2 Easy Version for 68020

The code in Listing 6.1 is the entire routine. It is a massive 38 bytes long.

1 ; Th i s code f i n d s t h e v a l u e o f t h e " Next Power o f Two" f o r any
2 ; g i v e n number .
3 ;
4 ; C a l l h e r e wi th one (long) p a r a m e t e r .
5 ; PRINT PEEK_L (s t a r t + 2) f o r t h e r e s u l t .
6
7 s t a r t b r a . s d o i t
8 r e s u l t ds . l 1
9

10 d o i t l e a r e s u l t , a1 ; R e s u l t a d d r e s s
11 move . l d1 , d0 ; Pa s se d p a r a m e t e r
12 subq . l #1 , d0 ; D0 might be a power o f 2
13 b f f f o d0 { 0 : 3 2 } , d1 ; F ind f i r s t 1 b i t
14
15 ; I f we f i n d a s e t b i t , D1 has t h e " o f f s e t " . B i t 31 = o f f s e t 0 ,
16 ; b i t 30 = o f f s e t 1 and so on . The b i t s a r e numbered from t h e
17 ; MSB which i s n o t t h e normal manner . To c o n v e r t , s u b t r a c t t h e
18 ; o f f s e t from 31 t o g e t t h e r e q u i r e d b i t number .
19
20 neg . l d1 ; D1 = −D1
21 add . l #31 , d1 ; Same as s u b t r a c t i n g !
22 addq . l #1 , d1 ; J u s t b e c a u s e !
23 moveq #0 , d2 ; For t h e r e s u l t
24 b s e t d1 , d2 ; S e t t h e r e s u l t b i t .
25 move . l d2 , (a1) ; Save t h e r e s u l t
26

6.3 Hard Version for 68008 43

27 done
28 c l r . l d0
29 r t s

Listing 6.1: MC60020 - Power2_asm

The value we pass in will end up in register D1. For some reason, I copy that into D0 (I forget why
I did that!) but I could have saved a couple of bytes here and there by leaving it alone! Silly me.

Anyway, the next step is to subtract 1 from D0 and then look for the most significant set bit. On
the 68020 we have the ability to use bit fields, so that’s what the BFFFO D0{0:32},D1 instruction
does, it stands for Bit Fields Find First One. It looks in D0, starting at offset 0 for 32 bits, for the
first set 1 bit. If there are no set bits, the Z flag will be set, and D1 will take on the bit field width,
or 32, as it’s value.

If there is a set bit, its offset will be placed in D1, however, the offset is not the actual bit number.
The offset, as the comments indicate, is counted from bit 31 down towards bit 0. Normally we
count bits from the least significant end but not in a bit field, they count from the most significant
end. Confusing or what. We can easily convert an offset into a bit number simply by subtracting it
from 31.

We subtract D1 from 31 in the roundabout way of negating D1 and adding 31 to it as −D1+31 =
31−D1.

6.3 Hard Version for 68008

That was the easy case, when using the 68020 processor’s useful BFFFO instruction, what about the
original QL’s 68008 processor - it doesn’t have this instruction?

Ok, going back to the examples above with 64 – a power of 2 already – first. If we AND a value
with the value minus 1, and keep going until we get a zero answer, we have detected the leftmost
set bit. For example:

• Value = ??
• Value = Value - 1 (in case it’s already a power of 2)
• Repeat loop
• If (value and (value - 1)) = 0, return value * 2
• Else value = (value & (value - 1))
• End repeat loop

For the initial value of 64, 0100 0000, we have:

64 − 1 = 63
63 = 0011 1111
62 = 0011 1110
AND = 0011 1110 = 62
61 = 0011 1101
AND = 0011 1100 = 60
59 = 0011 1011
AND = 0011 1000 = 56
55 = 0011 0111
AND = 0011 0000 = 48
47 = 0010 1111
AND = 0010 0000 = 32
31 = 0001 1111

44 Chapter 6. Powers of Two

AND = 0000 0000 = 0 .

As 32 was the current value when we got zero, we return 64, which is the next power of two to 64.
Return 2∗32 = 64.

If you look at the binary values above, you will see that we delete one of the lower significant 1s
each time we AND with (value−1). When only a single 1 bit remains, the highest, we are done.

Continuing with the above examples, let’s now do 65.

65 − 1 = 64
64 = 0100 0000
63 = 0011 1111
AND = 0000 0000 = 0 .

As before, the current value was 64 when we got a zero from the AND operation, so we exit and
return the result of 128. That was quick!

Looking good, what about 1?

1 − 1 = 0
0 = 0000 0000
−1 = 1111 1111
AND = 0000 0000 = 0 .

In this example, the value when we hit zero was zero, so returning 2∗0 is not the correct answer!

It appears that 1 is a special case which the code in Listing 6.2 must check for at the start. This
code assembles to a massive 44 bytes – slightly larger than the 68020 code in Listing 6.1.

1 ; Th i s code f i n d s t h e v a l u e o f t h e " Next Power o f Two" f o r any
2 ; g i v e n number . The f i r s t few r e s u l t s a r e :
3 ;
4 ; C a l l h e r e wi th one (long) p a r a m e t e r .
5 ; PRINT PEEK_L (s t a r t + 2) f o r t h e r e s u l t .
6
7 s t a r t b r a . s d o i t
8 r e s u l t ds . l 1
9

10 d o i t l e a r e s u l t , a1 ; R e s u l t a d d r e s s
11
12 ; S p e c i a l c a s e . I f D1 i s 1 , we e x p e c t 2 as t h e r e s u l t . But
13 ; we a c t u a l l y g e t 0 . Th i s i s b e c a u s e ANDing D0 wi th 1−1 = 0 .
14
15 move . l d1 , d0 ; Pa s se d p a r a m e t e r
16 cmpi . l #1 , d0 ; Was i t 1?
17 beq . s done ; Yes , r e t u r n r e s u l t (2)
18
19 s e t u p
20 subq . l #1 , d0 ; D0 might be a power o f 2
21 move . l d0 , d2 ; TEMP i s D2
22
23 loop move . l d0 , d1 ; D1 = D0

6.3 Hard Version for 68008 45

24 subq . l #1 , d1 ; D1 = (D0 − 1)
25 and . l d1 , d2 ; TEMP = D0 & (D0 − 1)
26 beq . s done ; Zero = no more s e t b i t s .
27 move . l d2 , d0 ; D0 = TEMP
28 bne . s loop ; Not done y e t .
29
30 done
31 l s l . l #1 , d0 ; D0 = 2 * D0
32 move . l d0 , (a1) ; Save t h e r e s u l t
33 c l r . l d0
34 r t s

Listing 6.2: MC68008 - Power2_asm

In the code, the comments show the algorithm in use for any non-special values – basically, anything
that isn’t 1 – and uses D2 as the TEMP register, D0 is Value and D1 is Value - 1.

D0 is loaded from D1 and has 1 subtracted in case it is already a power of 2. It is then copied
into D2 ready for the main loop. In the loop, D0 is again copied, this time over to D1, and has 1
subtracted. This is ANDed with D2 and if the result is zero, we exit the loop and return whatever is
in D0 * 2.

If the result is not yet zero, we copy D2 into D0 as the new value, and try again from the top of the
loop. Eventually, we will get a zero result and will bale out with a value to return.

If the value passed was 1, then we copy that into D0 as normal, and test for the special case. If we
find it, we skip over the main processing and return 1∗2, which is the correct result.

Make a Procedure?

It shouldn’t be too hard to convert one of the two listings above into a working SuperBASIC
function:

• Fetch one parameter as a long integer into D1;
• Call the code to do the working out, but grab D0 at the end as opposed to storing it;
• Allocate 2 extra bytes of maths stack for the result – there’s 4 on there already;
• Convert D0.L to a float and save on the maths stack;
• Set D3 for a float;
• Clear D0;
• Done.

7. Random Stuff

Ever needed some randomisation in your assembly code? No, neither have I until recently when I
suddenly had a need to generate random numbers from 1 to 6 inclusive. How is this possible, given
that there are no apparent vectors or traps to grab hold of a random number?

I could have cheated and had a look through my copies of 68000 coding books – but that would
have been in breach of copyright, probably, and best avoided. So I did the next best thing, I stole
some code from the SMSQ sources!

Almost nothing in the following is my own work, I have stolen it, and only slightly modified it to
suit what I needed it for. It does work though, I’m happily generating numbers from 1 to 6 inclusive,
and no, it is not a dice (die) that I’m emulating even if the same numbers are involved!

7.1 Random Seed

The code I was working on is to be used in a job, so I have a storage location for my random seed
which is an offset from the A6 register. The following code takes that into consideration.

1 ; In j o b code , t h i s i s an o f f s e t from t h e A6 r e g i s t e r .
2
3 myRandSeed equ 0
4
5 ; The j o b code s t a r t s h e r e
6 s t a r t b r a . s myCode
7 dc . l 0
8 dc .w $4afb
9

10 fname
11 dc .w fname_e−fname−2
12 dc . b "My Job ’ s Name"
13
14 fname_e

48 Chapter 7. Random Stuff

15 equ *
16
17 myCode
18 adda . l a4 , a6 ; A6 p o i n t s t o our d a t a
19 c l r . l d1 ; Randomise t h e d a t e
20 b s r r andomise ; Do i t
21 . . . ; Do s t u f f
22 b s r rnd ; G e n e r a t e a word 1 t o 6
23 i n c l u s i v e
24 . . . ; Do more s t u f f

Listing 7.1: The random seed

The purpose of the job code is not relevant here, it will become apparent, I hope, when I get it
finished – either in this edition or a future one. Coming soon1 and all that!

I could have used the system random seed for my own numbers, but I thought about it and didn’t
want to mess up any other programs that could be running but which depend on a certain set of
random numbers based on a starting random seed. Unlikely, perhaps, but I decided to avoid the
problem.

7.2 Randomisation

Now that we have the seed variable, we will need a manner of initialising it with a new value.
SuperBASIC does this by taking the clock’s value in seconds if we don’t supply a value ourselves,
so that’s good enough for me too. You will note from the comments that this code is stolen and
only amended in a minor manner for my own needs.

24 ;−−
25 ; Th i s i s e f f e c t i v e l y ramdomise (d a t e) . The code i s e x a c t l y as
26 ; p e r t h e SBas ic RANDOMISE f u n c t i o n . I s t o l e t h e code !
27 ; (s b s e x t / e x t / rnd . asm)
28 ;
29 ; E n t e r w i th D1 . L = 0 t o randomise (d a t e) o r wi th D1 . L = some
30 ; s p e c i f i e d v a l u e t o randomise (D1) .
31 ;
32 ; P r e s e r v e s a l l r e g i s t e r s .
33 ;−−
34 randomise
35 movem . l d0−d2 / a0 ,−(a7) ; Save worke r s
36 t s t . l d1 ; D1 p a s s e d wi th a v a l u e ?
37 bne . s randomise_d1 ; Yes , s k i p t h e d a t e
38 moveq # mt_ rc l ck , d0 ; Read c l o c k i n t o D1
39 t r a p #1 ; No e r r o r s , no need t o
40 ; ; c a l l doTrap1 .
41
42 randomise_d1
43 move . l d1 , d2 ; Copy HHHH LLLL
44 swap d1 ; LLLL HHHH
45 add . l d2 , d1 ; LLLL = HHHH
46 move . l d1 , myRandSeed (a6) ; Save random seed
47 movem . l (a7) + , d0−d2 / a0 ; r e s t o r e worke r s

1Given my record, for certain values of “soon”!

7.3 Random Generation 49

48 r t s

Listing 7.2: Randomise function

The code should call the randomise entry point either with D1.L holding zero, or the required starting
value for our seed. If we passed zero in D1, then the current date, in seconds, is read from the
system and used as a starting point.

Arriving a label randomise_d1, we have a non-zero value in D1.L and can use it to randomise the
system. The value is copied into D2.L for safety, then D1 is swapped over to put the low word
into the high word and vice versa. If we started with D1.L holding $12345678 we end up with
$56781234. This value is then added to the original seed value in D2.L to give, in this example,
$68AC68AC.

Whenever randomise is called, we end up with a new random seed which has the high and low
words identical. However, as soon as we begin using the seed, that changes. Read on.

7.3 Random Generation

Before we continue, can I just point out that I am by no means a mathematician and while I can
look at what the code is doing, I have no idea what formula it is using to do it!

The first problem is to generate a random number from the random seed and to update the seed. We
need to do this to avoid generating the same value over and over again!

49 ;−−
50 ; Th i s i s e f f e c t i v e l y RND(1 TO 6) . The code does e x a c t l y as
51 ; p e r t h e SuperBASIC RND() f u n c t i o n . I s t o l e t h e code !
52 ; (s b s e x t / e x t / rnd . asm)
53 ;
54 ; D1 = Bottom of r a n g e = 1 .
55 ; D2 = Top of r a n g e + 1 = 7 .
56 ;
57 ; R e t u r n s D1 .W as RND(1 t o 6) and o b v i o u s l y t r a s h e s D1 .
58 ;−−
59 rnd
60 movem . l d0 / d2 / d4 ,−(a7) ; Save worke r s
61 move . l myRandSeed (a6) , d0 ; Get s eed v a l u e
62 move .w d0 , d4 ; Copy low word LLLL
63 swap d0 ; LLLL HHHH
64 mulu # $c12d , d0 ; HHHH * 49453
65 mulu #$712d , d4 ; LLLL * 28973
66 swap d0 ; HHHH LLLL
67 c l r .w d0 ; HHHH 0000
68 add . l d0 , d4 ; I have no i d e a ! ! !
69 addq . l #1 , d4 ; New seed
70 move . l d4 , myRandSeed (a6) ; Save seed

Listing 7.3: Rnd 1 to 6 function - Part 1

After saving the registers we will be working with, except D1 which we use to return the random
number later, we grab hold of the random seed and start messing about with it to generate a new
seed.

The high word of the seed, in D0, is multiplied by 49,453 and the low word, in D4, by 28,973
neither of which are prime. Both are divisible by 7 if you don’t fancy working it out! The resulting

50 Chapter 7. Random Stuff

long word is D0 is swapped and added to D4 before D4 is incremented. This is our new random
seed and is saved accordingly ready for the next call to the rnd routine.

If you want to work through an example:

The original seed, $68AC68AC, is copied to D0 and D4. After swapping D0, which has no real
effect on the first call after a call to randomise, we end up with D0.L = $68AC68AC and D4.L =
$xxxx68AC. We are going to multiply so the high word of D4 is of no interest.

After the two multiplications, we now have D0.L = $68AC * $C12D = $4EFC123C and D4.L =
$68AC * $712D = $2E46523C.

Swapping D0 and clearing the low word gives $123C0000 which we then add to D4 to get
$4082523C which is then incremented to $4082523D and used as the next random seed.

After all that, we are now, finally, ready to generate the random integer between 1 and 6 that we
want.

The code below is designed2 to only generate a random number between 1 and 6, inclusive, and
these two values are hard coded into registers D1 and D2. Should you wish to generalise the
following code to pass your own ranges, it should be quite simple.

71 rndOneToSix
72 moveq #1 , d1 ; Bottom of r a n g e
73 moveq #6+1 , d2 ; Top of r a n g e + 1
74 sub .w d1 , d2 ; S i z e o f r a n g e

Listing 7.4: Rnd 1 to 6 function - Part 2

First we work out the range of values that we need. This is (D2+1)−D1 which in this case,
always works out as (6+1)−1 giving a range of 6. At this point we have a random

long integer in D4 and a range in D2.

75 swap d4 ; LLLL HHHH of seed
76 mulu d2 , d4 ; D4 .HHHH * t o p
77 swap d4 ; Take t o p word
78 add .w d4 , d1 ; Add r a n g e bot tom
79 ; ; D1 = RND(1 t o 6)
80 movem . l (a7) + , d0 / d2 / d4 ; R e s t o r e worke r s .
81 r t s

Listing 7.5: Rnd 1 to 6 function - Part 3

Now, for some unknown reason, we swap D4, our new random number and seed, and multiply the
previous high word by the range of values we are looking for, and swap it back again. After this,
we add the bottom value of the range to the low word of D4 and this is our value between 1 and 6.
We then restore the working registers and return the value in D1.W.

Continuing the worked example from previously, D4 starts off as $2E46523D and we multiply the
high word, $2E46, by the range, 6, to get $000115A4. After swapping D4 back to get $15A40001,
we add on the base of the range, 1, to get our actual random number, $0002 in this case.

Any mathematicians out there fancy writing up an explanation of exactly what the hell is going on
there?

Update 16 January 2021: Thanks to Marcel Kilgus, it appears that the code in the rnd routine where
we have this:

2For certain values of “designed”!

7.3 Random Generation 51

49 rnd
50 . . .
51 mulu # $c12d , d0 ; HHHH * 49453
52 mulu #$712d , d4 ; LLLL * 28973
53 . . .
54 c l r .w d0 ; HHHH 0000
55 . . .

Listing 7.6: Rnd 1 to 6 function - Part 1

could possibly be a typo! He believes that the code should be calculating a 32 bit by 16 bit
multiplication – the expression:

myRandSeed = myRandSeed ∗$712D+1

However, it seems to be this instead:

myRandSeed = myRandSeed ∗$712D+((myRandSeed&$F0000)∗$5000)+1

Why? Perhaps a typo, perhaps to make it more random. Nobody knows!

Thanks Marcel.

8. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Happy New Year
	3 Feedback on Issue 5
	4 Feedback on Issue 7
	4.1 Feedback from Wolfgang Lenerz
	4.2 Feedback from Marcel Kilgus
	4.3 More Feedback from Wolfgang Lenerz
	4.4 Even More Feedback from Wolfgang Lenerz
	4.5 A Better Ql2utf8
	4.6 A Better Utf82ql

	5 Reversing Bits
	5.1 Reversing 2 Bits
	5.2 Reversing 4 Bits
	5.3 Reversing 8 Bit values
	5.4 Reversing 16 Bit Values
	5.5 Reversing 32 Bit Values

	6 Powers of Two
	6.1 The Algorithm
	6.1.1 How it Works

	6.2 Easy Version for 68020
	6.3 Hard Version for 68008

	7 Random Stuff
	7.1 Random Seed
	7.2 Randomisation
	7.3 Random Generation

	8 Image Credits

